If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-50x+128=0
a = 2; b = -50; c = +128;
Δ = b2-4ac
Δ = -502-4·2·128
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-6\sqrt{41}}{2*2}=\frac{50-6\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+6\sqrt{41}}{2*2}=\frac{50+6\sqrt{41}}{4} $
| –7+u/6=0 | | 2(f+-7)=6 | | –7+u6=0 | | -4(f+1)=12 | | (5x-4)(2x-7)=0 | | b=40-9b | | 12+y3=15 | | 25=k÷5 | | 12+5t=4t | | -6(1-m)=0-2m | | 1/4k-6=3 | | -4(4x+5)=124 | | 45=(2w+1)w | | 47=10r+17 | | -5(-1+5x)=-20 | | 6m-3+7=9 | | 5(4-6x)=170 | | -10x+4=-8x | | 3-2/b=1/3bb-7 | | 7h=-1(2h+18) | | x/465.3=16.5 | | 20=n/611 | | x/16.5=465.3 | | 4/n−2=5 | | 7k/3=27 | | r+6r+6-5r=14-2r | | 5/m−3=8 | | 1/3x+1/4=-3(5/6x-1) | | –z/3–9=–7 | | 0/4t=0.72 | | 341=5y | | 7x-12x-1=-26 |